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Abstract
We show explicitly that the perturbative SU(N) Chern–Simons theory arises
naturally from two Penner models, with opposite coupling constants. As a
result computations in the perturbative Chern–Simons theory are carried out
using the Penner model, and it turns out to be simpler and transparent. It is also
shown that the connected correlators of the puncture operator in the Penner
model are related to the connected correlators of the operator that gives the
Wilson loop operator in the conjugacy class.

PACS numbers: 11.15.Pg, 11.25.Pm
Mathematics Subject Classification: 14, D99

The free energy of the Penner model [1] is the generating function of the orbifold Euler
characteristics of the moduli space of Riemann surfaces of genus g, with s punctures.
Computation of such a topological invariant was first computed by Harer and Zagier [2]
by reducing a topological problem to a combinatorial problem and then solving it. The SU(N)

perturbative Chern–Simons free energy based on the 1/N expansion introduced by ’t Hooft
[3], and the Penner free energy have formally a similar topological expansion. This is the case,
since both models use fatgraphs techniques that keep track of powers of N. The perturbative
Chern–Simons free energy [4] may be written as

F =
∑

g=0,h=1

Cg,hN
2−2gλ2g−2+h,

where λ is the ’t Hooft coupling constant and h is the number of faces (boundaries) of the
triangulated Riemann surfaces. In the Penner model h is identical to the number of punctures.
The coefficient Cg,h was shown by Witten [5] to be identical to the partition function of the
A-model topological open string theory at genus g with h boundaries on a six-dimensional
target space T ∗S3. We will see that these coefficients Cg,h are related to the orbifold Euler
characteristics of the moduli space of Riemann surfaces of genus g, with 2h punctures.
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The explicit expression for the Penner free energy F = log Z in terms of the genus and
the punctures is [6]

F(t,N) =
∑
g,s

N2−2g(−1)s t2g+s−2χg,s, (1)

where the coefficients χg,s are the orbifold Euler characteristics of the moduli space of Riemann
surfaces of genus g with s punctures; explicitly this topological invariant is given by

χg,s = (−1)s(2g − 3 + s)!(2g − 1)

(2g)!s!
B2g

where B2g are the Bernoulli numbers. Note that the topological expansion of the free energy
used by Distler and Vafa [7] is F(t,N) = ∑

g,s N2−2gt2−2g−sχg,s . This expansion follows

from equation (1) by simply letting t → − 1
t
.

Let us now consider a sum of two Penner models, one with a coupling constant t and the
other with a coupling constant −t , such that the topological expansion of the free energy in
both cases is given by equation (1). If the coupling constant in the Penner model is set to be
equal to λ/2πn, λ is the Chern–Simons Coupling constant and n is a positive integer. Let
F(λ,N) be the total free energy for the two Penner models, then by using equation (1) and
summing over n one has

F(λ, ,N) =
∞∑

g=0

∞∑
n=1

∞∑
s=1

N2−2g(λ/2πn)2g+s−2χg,s((−1)s + 1)

= 2
∞∑

g=0

∞∑
n=1

∞∑
p=1

N2−2g(λ/2πn)2g+2p−2χg,2p. (2)

Explicitly, if we write F(λ,N) = ∑
g N2−2gFg(λ), then the genus-g contribution Fg(λ) to

the free energy is nothing but the perturbative SU(N) Chern–Simons free energy F
p
g (λ) on

S3 [4],

F0(λ) = −2
∞∑

n=1

∞∑
p=2

1

2(p − 1)2p(2p − 1)

(
λ

2πn

)2p−2

F1(λ) =
∞∑

n=1

∞∑
p=1

B2

2p

(
λ

2πn

)2p

Fg(λ) = 2
∞∑

n=1

∞∑
p=1

(2g − 3 + 2p)!(2g − 1)

(2g)!(2p)!
B2g

(
λ

2πn

)2g+2p−2

.

(3)

Note that the Bernoulli numbers Bg in the above equation are alternating unlike those in
[4], are taken to be all positive. As one can see from the above equation, the computations
are simple and follow immediately from the Penner model. The genus expansion of the free
energy in the perturbative Chern–Simons theory [4] is obtained from the following perturbative
term in λ,

Fp(λ) =
N−1∑
j=1

(N − j)
∑
n=1

ln

(
1 − j 2λ2

4π2n2N2

)
.

Having identified the perturbative Chern–Simons free energy F
p
g (λ) on S3 with the

extended Penner model described above, we may use the latter to do our computations in the
perturbative Chern–Simons. Here computations are done for both the double-scaling limit
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[8], and summation over the boundaries p as well as over the integer n of the perturbative
Chern–Simons [9]. Let us first find the continuum limit in this theory; to do so, one needs
to sum over all faces (boundaries) p in the free energy F

p
g (λ). Using the Penner model, this

summation is equivalent to sum over all punctures. For g = 0, Penner model the sum over all
punctures was computed explicitly [6], and we obtained the following identity,

F0(t) = −
∞∑

k=1

1

k(k + 1)(k + 2)
tk = (1 − t)2

2t2
ln(1 − t) − 3

4
+

1

2t
. (4)

Therefore, from the relation between the perturbative Chern–Simons and the extended Penner
model summarized by equation (2), the sum over boundaries for g = 0 is

F0 =
∞∑

n=1

[
(1 − λ/2πn)2

2(λ/2πn)2
ln(1 − λ/2πn) +

(1 + λ/2πn)2

2(λ/2πn)2
ln(1 + λ/2πn) − 3

2

]
. (5)

The free energy is even in both n, and λ as it should be, see equation (3). If we define a new
coupling constant νn by νn = 2πN

λ

[
λ

2π
− n

]
, as in [8], then multiplying the above sum by N2

gives

N2F0(λ) =
∞∑

n=1

[
iπ

2
ν2

n +
1

2
ν2

n ln(νn/N) − 3

4
ν2

n + (n → −n)

]

−N2
∞∑

n=1

[
ln

(
2πn

λ

)
+

4π2n2

λ2

(
ln(λ/2πn)

(
2πn

λ

)
− 3

2

)]
. (6)

Note the presence of the term, iπ
2 ν2

n , is responsible for the evenness of the free energy with
respect to n and λ. For g = 1, the summation over boundaries is simpler and one may use either
F1(λ) given by equation (3), or the Penner free energy [6] given by F1(λ) = −B2

2 ln(1 − t).
Therefore, in this case one has

F1 = −1

2
B2

∞∑
n=1

[
iπ + ln

(
νn

N

)
+ (n → −n)

]
+ B2

∞∑
n=1

ln

(
2πn

λ

)
. (7)

Before summing over boundaries for the higher genus g � 2, one gives first summation
over punctures in the Penner model. Using the identity −(

d
dt

)2g−3
t−(s+1) = (2g−3+s)!

s! t2−2g−s ,
the sum over punctures in the free energy Fg(t) = ∑

s t2−2g−sχg,s for g � 2 is

Fg(t) =
[

1

(1 + t)2g−2
− 1

t2g−2

]
χg,0, (8)

where χg,0 = B2g

2g(2g−2)
is the orbifold Euler characteristic of the moduli space without

punctures. Incidentally, the topological expansion for Fg(t) studied in [7] has two critical
points, namely t = −1 and t = 0. As we made it clear in this paper, the perturbative Chern–
Simons is connected to the original topological expansion of the Penner model studied in [6],
i.e., equivalent to letting t → − 1

t
in equation (8). Therefore the sum over the punctures in the

original Penner model reads

Fg(t) = [(1 − 1/t)2−2g − t2g−2]χg,0. (9)

Now, as we did for g = 0 and g = 1, the sum over the boundaries in the perturbative
Chern–Simons for Fg(λ) is the sum over n of Fg

(
λ

2πn

)
+ Fg

(− λ
2πn

)
, that is,

Fg(λ) = χg,0

∞∑
n=1

[
ν2−2g

n + (n → −n)
] − 2χg,0

(
λ

2πN

)2g−2

ζ(2g − 2), (10)
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where ζ(2g − 2) = ∑∞
n=1

1
n2g−2 . The Chern–Simons theory coupling constant λ is related

to the level of the Kac–Moody algebra k by λ = 2πN
k+N

; this shows that λ has a fundamental
domain between 0 and 2π . Therefore, the natural critical double scaling limit would be

λ → 2π ν1 = finite.

Note that at this critical point λ/2π → 1 that is, t → 1 which is nothing but the critical point
in the Penner model [6].

We turn now to the sum over the boundaries p, and over n of the free energy Fg(λ); this
sum is known to be connected to the Hodge integrals and Gromov–Witten theory [10]. For
g = 0, the computations are easy and straightforward. From equation (5) one has
(

N

λ

)2

F0(λ) =
(

N

λ

)2 ∞∑
n=1

[
4π2n2 (1 − λ/2πn)2

2
ln(1 − λ/2πn)

+ 4π2n2 (1 + λ/2πn)2

2
ln(1 + λ/2πn) − 3λ2

2

]
. (11)

Differentiating F0(λ), with respect to λ, twice gives d2/dλ2F0(λ) = ∑′
n∈Z[ln(1 − λ/2πn)],

where n = 0 is not included in the sum. From the product formula sin(πx)

πx
= ∏

n=1

(
1 − x2

n2

)
,

one has the identity∑
n∈Z,n�=0

[ln(1 − λ/2πn)] = iλ/2 + ln(1 − e−iλ) − ln λ − i
π

2
. (12)

Therefore, we see that our computations using the Penner model are simpler and transparent.
The summed free energy F0(λ) is obtained simply by integrating twice the expression for
d2/dξ 2F0(ξ) with respect to ξ from 0 to λ. Note that here we follow closely the same lines in
deriving the product formula for sin x. Taking ln λ = 2iπm, θ = 0, the cut line being the real
axis then

F0(λ) = ζ(3) + iζ(2) − i(m + 1/4)πλ2 + iλ3/12 +
∞∑

n=1

e−inλ

n3
; (13)

this is identical to the result obtained in [9]. The coefficient of the last term in the above
equation is the g = 0 Gromov–Witten invariant of a Calabi–Yau 3-fold, C(0, n) = 1

n3 [10].
For g = 1 one can see that the free energy up to constant terms is given by

F1(λ) =
∑

n∈Z,n�=0

[ln(1 − λ/2πn)] = −B2/2[iλ/2 + ln(1 − e−iλ)]. (14)

The Gromov–Witten invariant in this case follows from the second term and is given by
C(1, n) = 1

12n
.

Now, we come to the sum over boundaries p for g � 2, as we explained before
this is equivalent to summing over punctures in the proposed penner model. By rewriting
equation (10), explicitly in terms of λ, we have

Fg(λ) =
(

N

λ

)2−2g

χg,0

∑
n∈Z,n�=0

[(λ − 2πn)2−2g] − 2

(
N

λ

)2−2g

χg,0

(
1

2π

)2g−2

ζ(2g − 2).

(15)

The sum over n may be carried out by simply using the product formula for sin πx, from
which we obtain

∑
n∈Z ln(λ − 2πn) ≈ ln(1 − e−iλ). Note that the terms that are not written
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would disappear upon differentiating (2g − 2) times the right-hand side of the approximation,
and so we have

Fg(λ) =
(

N

λ

)2−2g

(−1)g−1χg,0
1

(2g − 3)!

∑
n�1

n2g−3 e−inλ

− 2

(
N

λ

)2−2g

χg,0

(
1

2π

)2g−2

ζ(2g − 2). (16)

The coefficient of the first term may be written as |χg,0| n2g−3

(2g−3)! , which is nothing
but the Gromov–Witten invariant C(g, n) [10]. The coefficient of the second term
2χg,0

(
1

2π

)2g−2
ζ(2g − 2) is the degree zero Gromov–Witten invariant [9]. This is identical

to the Hodge integral,
∫
Mg

c3
g−1 [4, 10], where cg−1 is the (g − 1) Chern class of the Hodge

bundle.
We now push further the connection between the Penner model and the perturbative

Chern–Simons theory. We carry out this connection by considering correlators in the Penner
model that exhibit logarithmic singularities, and find out the corresponding correlators in the
CS theory. In the former the correlators that exhibit logarithmic scaling violation are the
puncture operators ∂/∂µ [6, 7, 11], where µ = N(1 − t). The free energy Fg(µ) is known
to be related to the orbifold Euler characteristics χg,0. When differentiated s-times, we obtain
a generating function for the orbifold Euler characteristics with s punctures. This procedure
is equivalent to putting s punctures on a Riemann surface. We have shown in [11] that the
puncture operator ∂/∂µ is identified with the operator Tr ln(1 − i

√
tM), where M is an N ×N

Hermitian matrix. The equivalence of the two operators was checked for the one-point and
the two-point connected correlators. Explicitly the kth power for the operator Tr ln(1 − M)

reads

1

k!
(Tr ln(1 − M))k = (−1)k


∑

j�1

Tr
Mj

j




k

= (−1)k
1

k!

∑
k1�0,k2�0,...

k!

k1!k2! · · ·
(

Tr M

1

)k1
(

Tr M2

2

)k2

· · ·

= (−1)k
∑

k1�0,k2�0,...

1∏
j�1 kj !jkj

∞∏
j=1

(Tr Mj)kj , (17)

where the sum is taken over all k’s, zero or positive integers such that
∑

kj = |	k| = k.
Therefore, the connected kth correlators of the puncture operator may be written as

1

k!
〈(Tr ln(1 − M))k〉c = (−1)k

∑
k1�0,k2�0,...

1

z	k
〈ϒ	k(M)〉c, (18)

where z	k = ∏
j�1 kj !jkj , ϒ	k(M) = ∏∞

j=1(Tr Mj)kj ; this formally looks like the operator that
gives the Wilson loop operator in the conjugacy class basis [12]. Therefore the correlators of
the puncture operator in the Penner model are very close to the logarithm of the expectation of
the Ooguri–Vafa operator [12, 13] ln〈Z(U, V )〉 = ∑

	k
1
z	k

〈ϒ	k(U)〉cϒ	k(V ). When the M × M

matrix V (source term) is the unit matrix then formally correlators of the puncture operator and
the above generating function are identical up to a constant factor. Therefore, it is possible to
compute 〈ϒ	k(U)〉c from the connected correlators of the Penner model [6]. These correlators
are written in terms of the orbifold Euler characteristics with punctures.
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Finally we point out that the connection between the perturbative Chern–Simons theory
and the Penner model may also be seen from the explicit expression for the free energy of the
Penner model [6],

F(t,N) =
∞∑

m=1

B2m

2m(2m − 1)

(
t

N

)2m−1

+
N−1∑
p=1

(N − p) ln

(
1 − pt

N

)
.

To obtain the perturbative Chern–Simons free energy, we follow the same procedure used in
the paper. Let t → −t , then one has

F(t,N) + F(−t, N) =
N−1∑
p=1

(N − p) ln

(
1 − p2t2

N2

)
.

Next, set t = λ
2πn

, then summing over n � 1 gives the perturbative Chern–Simons free energy
[4]. It remains to see the physical justification and interpretation of the connection between
the perturbative Chern–Simons theory and the extended Penner model, proposed in this paper.
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